
An E�cient Secure Authenticated Group Key Exchange Algorithm

for Large and Dynamic Groups�

Jim Alves-Foss

Center for Secure and Dependable Software

University of Idaho

Abstract

We present a new secure authenticated group key exchange algorithm for large groups.

The protocol scales e�ciently and performs well for dynamic group operations such as join,

leave, merge and sub-grouping. The algorithm converts any underlying two-party key exchange

algorithm into an e�cient group key exchange algorithm.

1 Introduction

Di�e and Hellman (DH) introduced the concept of two-party key exchange in 1976 [7]. Since that
time there have been several attempts to extend their e�cient algorithm to multi-party situations,
speci�cally [5, 8, 14, 16]. The importance of such algorithms can not be overstated. The ability
to dynamically and publicly establish a session key for secure communication between a group of
participants is a foundation of many secure group applications, such as conference calls, distributed
computation, and distributed databases.

There are two classes of solutions that have been proposed for group key establishment in the
literature. The �rst class is based on key distribution schemes where a single participant generates
keying material and securely transmits it to all parties. If designed or implemented correctly this
type of algorithm can be very e�cient [6, 11, 17, 18], especially if it is developed hierarchically.
However, this approach requires a trusted group controller to create and distribute the keys. All
participants must assume that the generated keying matieral is valid and secure. Such approaches
are not the focus of this paper and will not be discussed further.

The second class of solutions is based on contributory key exchange algorithms where all partic-
ipants Pi generate a private value ki and a corresponding public value PKi. Through an exchange
of public values and additional key exchange operations (KEOs) they reach agreement on a �nal
shared key. These approaches maintain the character of DH key exchange in that all parties are
involved in the generation of the new shared key.

In this paper, we present an e�cient authenticated multi-party contributory key exchange algo-
rithm that operates in the spirit of the DH algorithm and is based on work in [1, 4]. Our algorithm

�This work was supported in part by a grant from DOE.



does not require the use of a speci�c underlying two-party key exchange algorithm, but rather can
be used with any underlying key exchange algorithm that uses public communication to establish
the shared key. Such algorithms include DH-style two-party key exchange based on discrete log-
arithms [7], Galois �eld (2k) [13], or Elliptic-Curves [12]. For groups of size n, our algorithm is
e�cient in that the number of sequential KEOs scales with log2n (unlike other algorithms that
scale with n or even n2.) The major bene�ts of contributory key exchange algorithms, such as the
one presented here, include:

� all participants can independently calculate the same �nal key K, using public information
PKj (for j 6= i) and their own private key ki.

� all participants can validate that their contribution ki is included in the generation of K
(thus guaranteeing that the freshness of K is at least that of ki). For one of the algorithms
presented in this paper (Alg1-DH), tests have shown that changing a single bit of one of the
participant's initial private key results in a change of half of the bits in the �nal key, the same
result we expect for randomly chosen initial private keys.

� the security of each ki and K is maintained.

The remainder of this paper is organized as follows. We begin with an overview of two-party
key exchange algorithms in Section 2. We then describe our general group key exchange algorithm
in Section 3 and prove the security of the generated key from the DH variant of our protocol in
Section 4. We then discuss the use of this algorithm in a dynamic group environment in Section 5.
Next, in Section 6 we discuss the enhancement of the security of the algorithm, speci�cally in the
context of authentication. We conclude the paper with a discussion of the protocol in the context
of related work.

2 Two-Party Key Exchange Algorithms

Two-party public key exchange algorithms involve the exchange of public keys and the use of the
partner's public key and a participant's private key to generate a new shared key. This section
brie
y describes two such algorithms. Note that these are not authenticated algorithms, in that
although a shared secret is generated, the identity of the participants is not veri�ed. A discussion
of authenticated versions of this protocol is included in Section 6.

2.1 Di�e-Hellman Key Exchange

The DH algorithm [7] proceeds as depicted in Figure 1. The two participants agree on a large
prime q and a generator � < q. Each participant, i 2 f0; 1g then chooses a random private key
ki and generates a corresponding public key PKi = �kimodq. The two participants then exchange
public values and raise them to the power of their private key (for example, participant 1 generates
K = (PK0)

k1modq.) Both participants therefore generate the same shared key K = �k0k1modq.
This key can then be used by each participant to independently generate the same session key,
ks = f(K) for some predetermined secure function f . The Di�e-Hellman problem (DHP) states
that it is computationally infeasible to determine K given (PK0; PK1; �; q). Although not proven,
it is widely believed that DHP is true.



jointly select � and q

initialize ki, a privately generated key
calculate PK(i) = �kimodq

transmit PK(i)
receive Y = PKi�1 from partner
calculate K = PK

ki
i�1modq = �k1k2modq

Figure 1: Behavior of Participant i in the Di�e-Hellman Two-Party Key Exchange.

2.2 Elliptic-Curve Key Exchange

jointly select prime p, curve Ep(a; b) and generator G = (x1; y1) 2 Ep(a; b).
initialize ki, a privately generated key
calculate PK(i) = kiG ; a point in Ep(a; b)
transmit PK(i)
receive Y = PKi�1 from partner
calculate K = kiPi�1

Figure 2: Behavior of Participant i in the Elliptic Curve Two-Party Key Exchange.

Following the style of DH key exchange, one can create a two-party key exchange algorithm using
elliptic curves as depicted in Figure 2, a complete discussion can be found in [12]. The two partic-
ipants agree on a large prime p, a curve Ep(a; b) and a generator G = (x1; y1) 2 Ep(a; b) such that
the smallest value of n for which nG = O is a very large prime. Each participant then chooses a
random private key ki and generates a corresponding public key PKi = kiG. The two participants
then exchange public values and multiply them with their private key (for example, participant
1 generates K = k1P0.) Both participants therefore generate the same key K = k0k1G, which is
actually a pair of numbers. At this point, each participant can independently calculate the same
session key ks = f(K) for some predetermined f . The literature on elliptic curves suggests that it
is infeasible to determine k given (G and kG) [12].

3 E�cient Authenticated Contributory Group Key Exchange

In this paper we present a new authenticated group key exchange protocol based on the security
of two-party key exchange algorithms such as those discussed in the previous section. Our solution
in this section is similar to that presented in [4, 1]; we enhance it with authentication in Section 6.
Treating a group as an abstract entity we expand the traditional two-party key exchange algorithms
into the group setting. With this new point of view we are able to build a new group, add
members and merge groups through an iterative process using two-party key exchange as a primitive
operation.

In the simplest case, assume that all group members are leaves of a complete binary tree,
and each member begins the algorithm occupying its own group. Each group then executes an
authenticated two-party key exchange with its sibling group, forming a new composite group de�ned



G(i; r) group id for participant i in round r, = b i
2r�1 c

C(g; r) id of the controller of group g in round r, = g � 2r�1

P (g; r) controller id for group g0s partner in round r, =

(
C(g� 1; r) g is odd
C(g+ 1; r) g is even

SK(i) current secret key for i. SK(i) is initialized with some secret key for i.
PK(i) current public key for participant i.

GEN(k) generates a public value from a secret key, k.
TP (k; y) two-party key exchange, calculates a new secret key from a privately

held key k and a public value y.

Figure 3: Functions for Algorithm 1.

initialize SK(i) = ki, a privately generated key

for r = 1 : : :log2n
let g = G(i; r)
calculate PK(i) = GEN(SK(i))
if (i == C(g; r)) then

transmit PK(i)
endif

receive Y = PK(P (g; r)) from partner

calculate SK(i) = TP (SK(i); Y )

Figure 4: Behavior of participant i in Algorithm 1.

by the parent node. All group members update to the new shared group key. The process is repeated
until there is only one group at the root of the tree. A more detailed description of this algorithm
is given below. A mathematical analysis of this type of algorithm can be found in [4], with a proof
of the e�ciency of the approach.

3.1 Algorithm 1

Our basic group key exchange algorithm is used to create a new group from a collection of subgroups.
In the basic description here, it is assumed that all group members know the identities of all other
group members, and that there is a total ordering on the member identi�ers (see Section 6 for a
description of the algorithm using other topologies). We utilize a binary workload distribution to
reduce the sequential execution time of the algorithm. The similarity of our approach to that of
[4] suggests the security of the algorithm will hold up under scrutiny. In addition, a proof of the
security of the DH variant of our algorithm is given in Section 4.

Assume that there are n = 2m group members, a two-party key exchange algorithm, and the
functions de�ned in Figure 3. During the course of the algorithm, each participant Pi executes m
rounds as depicted in Figure 4.

Initially, each participant selects a private key and is assigned to its own group. They then
execute the rounds of Figure 4. The behavior of a round consists of two subgroups merging to form



a new composite group using an underlying two-party key exchange algorithm. Each participant
starts the round with a secret key, shared with all other subgroup members. All participants
calculate a public key from this shared secret key (as they would in the two-party case); and the
group controller broadcasts it to all members of the partner subgroup1. Each group member, upon
receiving the partner's public key, calculates a new shared secret key for the new composite group
(as it would in the two-party case). A new controller is selected for the composite group. The
algorithm repeats until there is only one group.

Algorithm 1 executes in log2n rounds, with each group member calculating at most a new
group key and a new public key in each round. Therefore the sequential run time of this algorithm
scales with the logarithm of the group size, unlike other published algorithms (see Section 8) which
scale linearly (or worse) with group size. In addition, as we show in Section 4, the resulting key is
secure.

3.2 Algorithm 1 Using Di�e-Hellman Key Exchange

As an example, this section de�nes Alg1-DH, a variant of Algorithm 1 which uses the DH algo-
rithm as its underlying two-party key exchange algorithm. Alg1-DH de�nes GEN(k) = �k and
TP (k; y) = yk , where all operations are performed modq. The remaining functions remain as
de�ned in Figure 3. The algorithm proceeds as follows:

1. Each participant, Pi, generates a DH key pair consisting of a private key ki and a correspond-
ing public key, PKi = �ki , where � and q are publicly agreed upon. Each Pi is then placed
in its own group Gi and is considered controller of that group. The group Gi has private key
ki and public key PKi.

2. For rounds 1: : :log2n, we merge pairs of groups Gi and Gi+1 (where 0 < i < n and i is odd),
into a new group. This involves the use of the DH algorithm to calculate a new DH key pair
with the private key k = �

kGikGi+1 and public key PK = �k. Every member of the new group
shares this key pair.

3. The resulting new group designates a speci�c member to be the group controller. The group
controllers are responsible for exchanging key generation messages. Although not required by
this algorithm, it is possible that some system architectures may require additional function-
ality of the controller such as authentication, message routing or other group management
functions.

At the end of this algorithm, every member shares the same DH group key, since each group
merge is e�ectively a standard DH key exchange. The proof of this point is straightforward and
is based on the fact that all members of the same subgroup share the same DH key pair, which
can now be used to generate session keys as de�ne in Section 2. For example, an 8 member group
would generate the �nal DH group key (modq) as:

�(�
(�(k1k2)�(k3k4))�(�

(k5k6)�(k7k8)))

1In [4] the authors propose having each group member transmit a single message to an equivalent member in the
partner group, eliminating the need for broadcasts.



Algorithm 1 works equally well with other two-party key exchange algorithms such as those
based on Elliptic Curves [12], or hybrid combinations of exchange algorithms, where di�erent
subgroups internally use di�erent key exchange algorithms. Section 5 outlines the proposed use
of this new algorithm in various group management situations. However, we will �rst prove the
security of Alg1-DH.

4 Security of Algorithm 1

Assuming the security of the DH algorithm, we show that Alg1-DH is secure. In this proof, all
operations are assumed to be performed modq.

Assumption: Let k1 and k2 be random numbers, and PKi = �ki be the corresponding public
derived values. The shared value k = �PK1PK2 derived using the two-party Di�e-Hellman key
exchange algorithm is indistinguishable (in polynomial time) from a random number.

Theorem 1. Let G be a group of size n = 2m and let k1 : : :kn be random numbers. The shared
value k derived in the application of Alg1-DH using initial values k1 : : : kn is indistinguishable (in
polynomial time) from a random number.

Proof. The proof is based on induction over m.

Base Case: m = 1. This defaults to the two party Di�e-Hellman key exchange, which is assumed
to be secure.

Induction Hypothesis: The shared value k derived in the application of Alg1-DH, for any group of
size 2m(1 � m) is indistinguishable (in polynomial time) from a random number.

Induction Step: Alg1-DH creates a group of size 2m+1 by merging two subgroups of size 2m. Let
k1 and k2 denote the shared secret values of these two subgroups. Alg1-DH uses these shared
values to create two public values PKi = �ki , and then executes the two-party DH to generate
the new shared key k = �k1k2 . From the induction hypothesis, k1 and k2 are indistinguishable
from random values. From the DH assumption, the value k is therefore indistinguishable from
a random number.

Theorem 1 immediately leads to the corollary that the key generated from the merger of two
binary-sized groups (where group size is a power of 2) is secure.

Corollary 1. Let G1 and G2 be two groups of size n1 = 2m1 and n2 = 2m2 respectively, with secure
shared group keys. The shared value k derived from the merger of these groups using Alg1-DH is
indistinguishable (in polynomial time) from a random number.

Proof. Let k1 and k2 denote the shared secret values of these two subgroups. Alg1-DH uses these
shared values to create two public values PKi = �ki , and then executes the two-party DH to
generate the new shared key k. Given that k1 and k2 are secure (indistinguishable from random
values) and the DH assumption, the value k is therefore indistinguishable from a random number.



In general, we do not have to limit ourselves to binary sized groups. We can break down any
size group into a collection of binary sized groups and merge those. This is a straight-forward
extension of algorithm 1 as discussed in Section 6.

Theorem 2. Let G be a group of size n and let k1 : : : kn be random numbers. The shared value k
derived in the application of Alg1-DH using initial values k1 : : : kn is indistinguishable (in polynomial
time) from a random number.

Proof. This proof is based on the binary decomposition of the size of the group.

Case 1: If n = 2m for some integer m, then we have the same situation as Theorem 1 and we are
done.

Case 2: If n 6= 2m for any integer m, we can rewrite n as the sum of its binary decomposition
n = xm2

m+xm�12
m�1+ : : :+x12

1+x02
0 where each xi 2 0; 1. A generic Alg1-DH will create

these groups �rst before merging them together. Each of these group's key is secure (as per
Theorem 1). Merging pairs of these groups will result in the same two-party interactions we
saw in Corollary 1. Therefore the merged groups have secure shared keys. We repeat this
process until there is only one group with a secure key k.

5 Dynamic Group Operations

Several groupware products require dynamic group behavior. This includes the ability to add and
delete group members, to combine groups, and to create subgroups. In this section we discuss the
e�cient use of Algorithm 1 to support these operations.

5.1 Group Genesis

Group genesis involves the initial creation of the group. As with other group management algo-
rithms, it is required that at least one member (the group controller) have prior knowledge of the
group members with some ordered labeling scheme. This information is then sent to all other group
members (if this is not desired, the controller can either route necessary key exchange messages
or pass on member identi�ers on a need-to-know basis). Using this labeling scheme we logically
arrange group members such that they can self select groups of size 2i (i = 0 : : :log2n) for stage i
of the algorithm. We then proceed with algorithm 1.

5.2 Group Fusion

Group fusion is a basic operation in algorithm 1. As such, any subsequent group fusion can be
implemented as if it was the �nal stage of algorithm 1 and therefore requires only one KEO for
every member in the new composite group (these can be executed in parallel). The group controllers
may store the previous keys to support security policies that permit re-keying when some group
members are o�-line, or permit reuse of old keys for re-join.



5.3 Single Member Join

A single member join is a special case of group fusion (with a group sizes of n and 1). The algorithm
executes as speci�ed above.

5.4 k-Member Join

If the group controller receives a join request from k independent entities, it can treat them as k
separate single member joins, or it can o�-load the workload by requesting the k entities to form
their own independent group. Subsequent to that operation (which takes log2k rounds) the new
group controller will initiate group fusion with the original group.

5.5 Sub-grouping, Single-Member Leaves and k-Member Leaves

At this point we have not determined any more e�cient algorithm to subgrouping or leave operations
other than a complete re-execution of algorithm 1. However, in the case of a single-member leave,
only those groups that have been reformed (due to the loss of the member) need to recalculate
their group key pairs. This means that in each iteration of the algorithm we double the number of
members involved in the calculation, reducing the total computation and communication cost but
not the number of rounds. Even without more e�cient algorithms, a complete re-run of algorithm
1 is sequentially more e�cient than published subgrouping algorithms [15].

6 Authenticated Group Key Exchange

Authenticated key exchange involves authenticating the identity of group members. Based on
group security policy this may involve anything from authentication of the new member to a single
exiting group member to authentication to every exiting group member. It is assumed that it is
acceptable for this authentication to utilize public-key authentication techniques. Some systems
may require authentication only to a central controller, others may permit implicit authentication
during group merge, and others may require complete pair-wise authentication as discusses below.
Several approaches to authenticated group key exchange have been discussed in the literature
[3, 6, 9, 10]. A full analysis of the methods presented here is left to subsequent publications.

6.1 Centralized Authentication { Algortihm 2

A group may designate a single trusted controller to perform authentication for the whole group.
In this situation, authentication could occur at the start of the key exchange algorithm. Each
participant could transmit its initial public key PKi using an authenticated message. The controller
would then validate the authenticity of the senders and then send a message to all group members
specifying the identities of the authenticated users. The algorithm would then proceed as normal,
using the authenticated public keys. To enhance security, the authentication of users could be
repeated at every round, authenticating all of the key exchange messages. Or, a third option is to
have each participant create a new authenticated message that contains a value encrypted with the
new shared key. An outline of this algorithm is demonstrated in Figure 5.



initialize SK(i) = ki, a privately generated key

calculate PK(i) = GEN(SK(i))
transmit signed = PK(i) to central authority

receive list of authenticated participants from central authority

for r = 1 : : :log2n
let g = G(i; r)
calculate PK(i) = GEN(SK(i))
if (i == C(g; r)) then

transmit PK(i)
endif

receive Y = PK(P (g; r)) from partner and checks identity

calculate SK(i) = TP (SK(i); Y )

Figure 5: Behavior of participant i in Algorithm 2.

initialize SK(i) = ki, a privately generated key

for r = 1 : : :log2n
let g = G(i; r)
calculate PK(i) = GEN(SK(i))
if (i == C(g; r)) then

transmit authenticated/signed PK(i)
endif

receive Y = PK(P (g; r)) and checks authentication

calculate SK(i) = TP (SK(i); Y )

Figure 6: Behavior of participant i in Algorithm 3.

6.2 Implicit Authentication { Algorithm 3

We de�ne implicit authentication as the process of authenticating the group controller and then
trusting the controller to have authenticated group members. This approach directly maps to
authenticated two-party key exchange algorithms where the participants authenticate the public
values distributed by their partners. In the group case, all members of a group would authenticate
the message from the controller (or their partner in the BW case [4]) of the other group. The key
exchange messages could include the identity of other group member. In either case the users will
implicitly assume the authentication of the other group's members. An outline of this algorithm is
demonstrated in Figure 6.

6.3 Pairwise Authentication { Algorithm 4

At the end of Algorithm 1, we have a group of users with a shared key. We can have each member
encrypt a message with the shared key and then broadcast (multicast) it in an authenticated
message to all group members. The other members would then authenticate each group member's
identity. If any of the authentications fail, the group key is discarded and an new key is generated



Perform Algorithm 1 resulting in new group key K

Generate new random value, v.

Generate ci = vK
Broadcast authenticated/signed ci to all group members

Receive and verify all cj where j 6= i

Figure 7: Behavior of participant i in Algorithm 4.

without the unauthenticated member. An outline of this algorithm is demonstrated in Figure 7.

7 Variants

In this section we discuss some possible variations and uses of Algorithm 1 on di�erent network
topologies. This section is only meant to provide a brief overview of these concepts, speci�c details
are left to a future paper.

Algorithm 1 was de�ned in terms of a perfectly balanced binary tree, with each participant
knowing the identities of all other participants. There are variations to this con�guration which
need to be addressed. Becker and Willie provide a theoretical foundation for the minimal number
of messages exchanged when the number of participants 6= 2n in a fully connected environment,
but do not address other topological limitations [4].

Partial Binary Trees In the description of Algorithm 1, we assumed that we had n = 2m

participants, such that we could map them to a complete binary tree. However, the algorithm can
be easily tailored for any number of members n, where 2m < n < 2m+1.

In one approach, we have participant Pn represent pseudo participants n+1 : : : ; 2m+1. Each of
the pseudo participants has private key 1, and public key � (the same is true of any group consisting
of only pseudo participants). Pn will broadcast these values when necessary.

In another approach, we divide the group into several subgroups, each with a group size a power
of 2. This can be accomplished by the binary decomposition n = xm2m+ xm�12m�1+ : : :+ x121+
x02

0 where each xm 2 f0; 1g. Each of the groups is formed, and then pairs of the groups are merged
until one group remains.

A Linked List Let us assume that participants information is originally organized in a bi-
directional linked list, with adjacent group controllers knowledgeable about their immediate neigh-
bors (recall that groups are initialized with one participant/controller per group). In the �rst round,
pairs of neighbors exchange values and one is chosen as a group controller for the merged group. In
addition, all participants pass on neighbor information. In subsequent rounds, we use the passed
on neighbor information to determine the identity of the new controller for the neighboring group.
In the round, keys and group neighbor information is exchanged, in addition the controller must
propagate key information down through its group (this can be accomplished along the original
linked list). In each round our neighbor information doubles in distance, allowing a logarithmic
execution of the algorithm.



8 Comparison

There are two measures of cost in key distribution. The �rst, based on message transmissions,
has been examined in [4]. The second is based on the cost of computations. A single two-party
key exchange operation (KEO) such as exponentiation is used as the basis of the computation cost
of group key exchange algorithms. Of the published algorithms analyzed in [16] the number of
sequential KEOs performed scale at least linearly with group size. Hence a doubling of the group
size doubles the time it takes to complete the algorithm. Our algorithm scales logarithmically with
group size, so a doubling of the group results in only 1 additional sequential KEOs. Since the
KEOs are computationally expensive, our algorithm provides a tremendous cost savings over other
proposed algorithms by greatly reducing this computational workload by distributing the work and
the key generation. Speci�cally we require on the order of log2n sequential exponentiations with a
total of nlog2n total exponentiations. This is a substantial savings in time and total computational
workload over previous work cited above. For comparison purposes the performance of algorithm 1
for group genesis is summarized below, a detailed discussion of the performance of other algorithms
can be found in [4, 16].

rounds log2n

messages 2n
combined message size 2n
exponentiations per Pi � 2 + 2log2n

sequential exponentiations 2 + 2log2n
total exponentiations � n(2 + 2log2n)

In addition to the savings in group genesis, member addition in algorithm 1 requires only one
KEO, as e�cient as any of the other algorithms. Addition of k members operates as a separate
group genesis for k members and then a single KEO for the �nal merge, this is more e�cient than
the other algorithms. The only place where algorithm 1 may fall back is in removal of a single
member or small number of members. Our algorithm requires a complete rerun of the genesis
algorithm, where the IKA.1 and IKA.2 algorithms can perform this operation rather e�ciently [15]
(although they still require n sequential exponentiations).

9 Conclusions

In this paper we presented a secure authenticated group key exchange algorithm that operates
e�ciently for large groups. Unlike other algorithms presented in the literature, our algorithm
does not scale linearly with group size, but logarithmically; resulting in tremendous performance
improvements for large groups. The only other contributory algorithm that performs this well is
the Becker-Willie algorithm in [4]. We have extended this work to include authentication. The
major bene�ts of this algorithm can be summarized as follows:

� The algorithm run time is logarithmic in the size of the group.

� It is a true contributory key exchange algorithm.

� At each stage of the algorithm, the group merge can utilize any underlying two-party key
exchange algorithm, and can securely rede�ne the group shared key.



� It is a provable secure algorithm.

� We have demonstrated authentication in this algorithm.

The algorithm, as presented, does not provide for a variation in network topologies. Although
this issue was discussed, it was felt that a detailed discussion be left for a subsequent publication.
In addition, we do not address issues related to the correct selection of parameters for two-party
key exchange, but assume that these are addressed according to good practices [2, 10].

References

[1] J. Alves-Foss. An e�cient secure group key exchange algorithm for large and dynamic groups.
Technical Report CSDS-99-08, Center for Secure and Dependable Software, Univ. of Idaho,
1999.

[2] R. Anderson and S. Vaudenay. Minding your p's and q's. In Advances in Cryptology {
ASIACRYPT '96, pages 26{35, 1996.

[3] Giuseppe Ateniese, Michael Steiner, and Gene Tsudik. Authenticated group key agreement
and friends. In 5th ACM Conference on Computer and Communications Security, pages 17{26,
San Francisco, California, November 1998. ACM Press.

[4] K. Becker and U.Willie. Comunication complexity of group key distribution. In 5th Conference
on Computers & Communication Security, pages 1{6, 1998.

[5] M. Burmester and Y. Desmedt. A secure and e�cient conference key distribution system. In
Advances in Cryptology - EUROCRYPT'94, pages 275{286, May 1994.

[6] M. Burmester and Y. Desmedt. E�cient and secure conference key distribution. In Security
Protocols: International Workshop, pages 119{129, April 1996.

[7] W. Di�e and M. Hellman. New directions in cryptography. IEEE Transactions on Information
Theory, 22(6):644{652, Nov. 1976.

[8] I. Ingemarsson, D. Tang, and C. Wong. A conference key distribution system. IEEE Transac-
tions on Information Theory, Sep. 1982.

[9] M. Just and S. Vaudenay. Authenticated multi-party key agreement. Technical Report SCS-
TR-96-04, Carleton University, Computer Science Department, Ottowa CA, 1996.

[10] M. Just and S. Vaudenay. Authenticated multi-party key agreement. In Advances in Cryptology
{ ASIACRYPT '96, pages 36{49, 1996.

[11] D. McGrew and A. Sherman. Key establishment in large dynamic groupd using one-way
function trees. Submitted to IEEE Transactions on Software Engineering, May 1998.

[12] A. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publishers, 1993.

[13] S. Pohlig and M. Hellman. An imporved algortihm for computing logarithms in gf(p) and its
cryptographic signi�cance. IEEE Transactions on Information Theory, 24(1):106{111, January
1978.



[14] D. Steer, L. Sawczynski, W. Di�e, and M. Weiner. A secure audio teleconference system. In
Advances in Cryptology - CRYPTO'88, Aug. 1990.

[15] M. Steiner, G. Tsudik, and M. Waidner. Key agreement in dynamic peer groups. Technical
report, Information Sciences Institute, Jan. 1999.

[16] Michael Steiner, Gene Tsudik, and Michael Waidner. Di�e-hellman key distribution extended
to groups. In Third ACM Conference on Computer and Communications Security, pages
31{37. ACM Press, March 1996.

[17] D. Wallner, E. Harder, and R. Agee. Key management for multicast: Issues and architectures.
Internet Draft (Work in progress), July 1998.

[18] C. Wong, M. Gouda, and S. Lam. Secure group communication using key graphs. In Proc.
of ACM SIGCOMM '98 Conference on Applications, technologies, architectures and protocols
for comptuer communications, pages 68{99, 1998.


	Table of Contents

